Firmicutes: The Low G + C Gram-Positive Bacteria
Genus *Clostridium*...

- Great practical importance
 - food spoilage through the Strickland reaction (oxidation and reduction of amino acids to organic acids)
 - industrial production of butanol
 - toxin production (botulinum toxin)
 - endospore formers
Important Species of *Clostridium*

- **C. botulinum**
 - food spoilage (especially canned foods); botulism
- **C. tetani** – tetanus
- **C. perfringens**
 - gas gangrene, foodborne illness
- **C. difficile** – important nosocomial infection
 - post antibiotic infection (CDAD), pseudomembranous colitis
- **C. acetobutylicum** - manufacture of butanol
Botulism

• Caused by *Clostridium botulinum*, an obligately anaerobic, endospore-forming, Gram-positive rod
 – on Select Agent List (agents that pose a severe threat – CDC)

• Most common source of infection is insufficiently heated home-canned food
 – endospores not killed, then germinate and produce toxin
 – if food inadequately cooked, toxin remains and causes disease
Botulism

- Botulinum toxin
 - neurotoxin that binds to synapses of motor neurons
- Diagnosis
 - restricted to reference laboratories
 - demonstration of toxin in patient’s serum, stool, or vomitus or *C. botulinum* in stool cultures
Botulism

• Infant botulism (most common form)
 – endospores ingested, germinate, reproduce, and produce exotoxin (stomach not acidic)
 – constipation, listlessness, general weakness, and poor appetite; death may result from respiratory failure

• Treatment, prevention and control
 – symptomatic/supportive therapy and administration of antitoxin
 – safe food processing practices and not feeding honey to babies under one year of age
Tetanus

• Caused by *Clostridium tetani*
 – anaerobic, Gram-positive spore-former
 • endospores found in soil, dust, hospital environments, and mammalian feces
 – produces tetanospasmin in low oxygen tension environments
 • causes prolonged muscle spasms
 – also produces tetanolysin, a hemolysin

• Portal of entry – skin wounds (puncture wounds most susceptible)
Tetanus

• Clinical manifestations
 – early in disease – tension or cramping and twisting of skeletal muscles and tightness of jaw muscle
 – advanced disease – trismus (“lockjaw”), characteristic facial expressions, board-like rigidity of trunk, tonic convulsions, and backward bowing of back
 – death usually results from spasms of diaphragm and inter-costal respiratory muscles
Tetanus

• Diagnosis
 – clinical history of wound infection and muscle stiffness

• Treatment, prevention, and control
 – antibiotic therapy and treatment with antitoxin
 – active immunization with toxoid (DPT vaccine), and proper care of wounds contaminated with soil, prophylactic use of antitoxin
Gas Gangrene or Clostridial Myonecrosis

- Most commonly caused by *Clostridium perfringens*
 - Gram-positive, spore-forming rod
 - produce gas gangrene, a necrotizing infection of skeletal muscle or clostridial myonecrosis
 - secretes toxin and tissue damaging enzymes
- Transmitted by contamination of injured tissue by spores from soil or bowel microbiota
Gas Gangrene

• Clinical manifestations
 – severe pain, edema, drainage, muscle necrosis

• Diagnosis
 – recovery of appropriate clostridial species and characteristic disease symptoms

• Treatment, prevention, and control
 – surgical debridement, administration of antitoxin, antibiotic therapy, and hyperbaric oxygen therapy
 – prompt treatment of all wound infections and amputation of limbs
Antibiotic-Associated Colitis (Pseudomembranous Colitis)

- *Clostridium difficile* (*C. difficile* associated diarrhea – CDAD)
 - uncomplicated diarrhea
 - pseudomembranous colitis
 - viscous collection of inflammatory cells, dead cells, necrotic tissue, and fibrin that obliterates the intestine
 - toxic megacolon
 - inflammation resulting in intestinal tissue death
Clostridium difficile

• Anaerobic spore forming bacillus found in the intestines of some healthy people
 – numbers are kept in check by other normal intestinal microbiota
 – excessive antibiotic use eliminates normal microbiota and allows *C. difficile* to overgrow
 • most common are amoxicillin, ampicillin, clindamycin, cephalosporins
 – increasing due to use of hand sanitizers
C. difficile Virulence Factors

- C. difficile multiplies and produces toxins
 - toxin A (enterotoxin causing diarrhea)
 - toxin B (cytotoxin kills cells)
- Inflammation, diarrhea, fever, nausea, cramping
- Most common cause of diarrhea in hospitalized patients
- Treatment is with antibiotics
Genus Bacillus

- Motile, peritrichous flagella, usually aerobic, catalase positive
- Various species produce antibiotics
- *Bacillus subtilis* is type species
 - Gram-positive, facultative anaerobe
 - soil-dwelling, spore forming
 - may develop biofilms
Bacillus subtilis

• Used as model organism for
 – gene regulation, cell division, quorum sensing, cellular differentiation

• Genome was one of first to be sequenced
 – families of genes expanded by gene duplication
 – 18 genes for sigma factors
 – ≥10 integrated prophages or remnants of prophages
Other Important Species of Bacillus

- **B. cereus** – food poisoning
- **B. anthracis** – anthrax
- **B. thuringiensis** and **B. sphaericus** – used as insecticide for years
Anthrax

• Caused by *Bacillus anthracis* (Select Agent)
 – Gram-positive, aerobic, endospore-forming
 – endospores viable in soil and animal products for decades
 – plasmid encodes genes for anthrax toxin

• Transmitted by direct contact with infected animals or their products
 – portal of entry determines form of disease

• Potential bioterrorism agent
Anthrax Virulence

- *B. anthracis* evades immune system by
 - capsule which inhibits phagocytosis
 - synthesis of complex exotoxin
 - protective antigen – forms hole for entry of other toxins
 - edema factor – fluid release and edema
 - lethal factor – inhibits cytokine production
 - macrophages die, release toxic contents leading to septic shock, death
Cutaneous Anthrax

• Infection through cut or abrasion of skin

• Clinical manifestations
 – 1 to 15 day incubation
 – skin papule that ulcerates (eschar), headache, fever, and nausea

• Antibiotic therapy
Pulmonary and Gastrointestinal Anthrax

• Pulmonary anthrax
 – woolsorter’s disease
 – inhalation of endospores
 – resembles influenza
 – if bacteria reach the bloodstream, usually fatal

• Gastrointestinal anthrax
 – ingestion of endospores
Anthrax

• Diagnosis
 – presumptive ID in sentinel labs of Laboratory Response Network (LRN)
 • Gram-stained smear of skin lesion, cerebrospinal fluid or blood; also growth and biochemical characteristics of culture
 – confirmatory diagnosis by PCR and serology
• Treatment, prevention, and control
 – antibiotic therapy and symptomatic/supportive therapy
 – immunization of animals and persons at high risk
Genus *Sporosarcina*

- Only known endospore - former that has coccoid and not rod shape
- Tolerates pH up to 10
 - degrades urea to ammonia and carbon dioxide
- Isolated from agricultural soils where animals urinate
Family *Staphylococcaceae*

- 5 genera, includes *Staphylococcus*
- Facultatively anaerobic, nonmotile, Gram-positive cocci
- Usually form irregular clusters
- Normally associated with warm-blooded animals in skin, skin glands, and mucous membranes
Members of *Staphylococci*

- **S. aureus** – coagulase positive, pathogenic
- **S. epidermidis** – coagulase negative, less pathogenic but nosocomial opportunists
- Many pathogenic strains are slime producers
- Teichoic acid and peptidoglycan contribute to pathogenicity
Staphylococcal Diseases

• Caused by members of the genus *Staphylococcus*
 – Gram-positive cocci, occurring singly, in pairs, tetrads, or grape-like clusters
 – facultative anaerobes and usually catalase positive
 – normal inhabitants of upper respiratory tract, skin, intestines, and vagina
Staphylococcal Diseases

• Harbored by asymptomatic carriers or active carriers (have the disease)
 – spread by hands, inanimate objects or expelled by respiratory tract, or through blood

• May produce disease in almost every organ and tissue

• Immune compromised most at risk
Virulence Factors of Staphylococci

• Exotoxins and enzymes involved in invasiveness

• Toxin genes may reside on plasmids and on chromosome

• Examples
 – enterotoxin – food intoxication
 – bacteremia and abscess formation
<table>
<thead>
<tr>
<th>Product</th>
<th>Physiological Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-lactamase</td>
<td>Breaks down penicillin</td>
</tr>
<tr>
<td>Catalase</td>
<td>Converts hydrogen peroxide into water and oxygen and reduces killing by phagocytosis</td>
</tr>
<tr>
<td>Coagulase</td>
<td>Reacts with prothrombin to form a complex that can cleave fibrinogen and cause the formation of a fibrin clot; fibrin may also be deposited on the surface of staphylococci, which may protect them from destruction by phagocytic cells; coagulase production is synonymous with invasive pathogenic potential</td>
</tr>
<tr>
<td>DNase</td>
<td>Destroys DNA</td>
</tr>
<tr>
<td>Enterotoxins</td>
<td>Are divided into heat-stable toxins of six known types (A, B, C1, C2, D, E); responsible for the gastrointestinal upset typical of food poisoning</td>
</tr>
<tr>
<td>Exfoliative toxins A and B (superantigens)</td>
<td>Cause loss of the surface layers of the skin in scalded-skin syndrome</td>
</tr>
<tr>
<td>Hemolysins</td>
<td>Alpha hemolysin destroys erythrocytes and causes skin destruction. Beta hemolysin destroys erythrocytes and sphingomyelin around nerves.</td>
</tr>
<tr>
<td>Hyaluronidase</td>
<td>Also known as spreading factor; breaks down hyaluronic acid located between cells, allowing for penetration and spread of bacteria</td>
</tr>
<tr>
<td>Panton-Valentine leukocidin</td>
<td>Inhibits phagocytosis by granulocytes and can destroy these cells by forming pores in their phagosomal membranes</td>
</tr>
<tr>
<td>Lipases</td>
<td>Break down lipids</td>
</tr>
<tr>
<td>Nuclease</td>
<td>Breaks down nucleic acids</td>
</tr>
<tr>
<td>Protein A</td>
<td>Is antiphagocytic by competing with neutrophils for the Fc portion of specific opsonins</td>
</tr>
<tr>
<td>Proteases</td>
<td>Break down proteins</td>
</tr>
<tr>
<td>Toxic shock syndrome toxin-1 (a superantigen)</td>
<td>Is associated with the fever, shock, and multisystem involvement of toxic shock syndrome</td>
</tr>
</tbody>
</table>
Staphlococcus aureus

• Most important human staphloccoccal pathogen
 – e.g., abscesses, boils, wound infections, pneumonia, toxic shock syndrome
 – major cause of common food poisoning

• Virulence factors
 – coagulase which causes blood plasma to clot
 – the toxin β-hemolysin lyses cells
Staphylococcal Food Poisoning

• Results from ingestion of improperly stored or cooked food (e.g., ham, processed meats, chicken salad, ice cream, and hollandaise sauce) in which *Staphylococcus aureus* has grown and released enterotoxin

• Bacteria produce heat-stable enterotoxins in food
 – properly cooking the food will not destroy toxin; intoxications can result from thoroughly cooked foods

• Symptoms include abdominal pain, cramps, diarrhea, vomiting, and nausea
Staphylococcal Food Poisoning

• Diagnosis
 – based on symptoms or laboratory identification of bacteria from food
 – enterotoxins can be detected in foods by animal toxicity tests

• Treatment, prevention, and control
 – fluid and electrolyte replacement
 – avoidance of food contamination, and control of personnel involved in food preparation and distribution
Staphylococcal Scalded Skin Syndrome (SSSS)

• Caused by strains of *S. aureus* that carry a plasmid-borne gene for exfoliative toxin (exfoliatin)

• Epidermis peels off revealing red area underneath

• Diagnosis
 – isolation/identification of *Staphylococcus* involves commercial kits
Staphylococcal Scalded Skin Syndrome (SSSS)

- Treatment, prevention, and control
 - isolation and identification based on catalase test, coagulase test, serology, DNA fingerprinting, and phage typing
 - antibiotic therapy
 - many drug-resistant strains
 - personal hygiene, food handling, and aseptic management of lesions
Toxic Shock Syndrome (TSS)

• Caused by *S. aureus* strains that release toxic shock syndrome toxin and other toxins

• Some cases occur in females who use superabsorbent tampons

• Disease results from body’s response to staphylococcal superantigens

• Clinical manifestations
 – low blood pressure, fever, diarrhea, extensive skin rash, and shedding of skin
Staphylococcal Lesions

- Localized abscess
 - *S. aureus* infects a hair follicle, tissue necrosis results
 - coagulase is produced forming a fibrin wall around lesion, limiting spread
 - liquefaction of necrotic tissue in center of lesion occurs; abscess spreads
 - may be a furuncle (boil) or carbuncle
 - bacteria may spread from area via lymphatics or bloodstream
Methicillin-Resistant Staphylococcus aureus (MRSA)

- S. aureus isolates that are resistant to β-lactam antibiotics (penicillins and cephalosporins)
- Community acquired (CA) – MRSA
 - healthy individuals not recently hospitalized
 - associated with serious and fatal infection
 - may also be acquired in health care setting
S. aureus Antibiotic Resistance

• Methicillin-resistant S. aureus (MRSA) and Vancomycin resistant S. aureus (VRSA)
 – among most threatening antibiotic resistant
 • VRSA may have no treatment
 – obtained from genetic elements received from other organisms
 – virulence factors also acquired from mobile genetic elements
Slime Producers (SP)

- Produced by pathogenic strains of *Staphylococcus*
 - a viscous extracellular glycoconjugate
 - allows bacteria to adhere to smooth surfaces and form biofilms
 - Inhibits neutrophil chemotaxis, phagocytosis, and antimicrobial agents
Staphylococcus epidermidis

- Common skin resident
- Sometimes responsible for endocarditis and for infections of patients with lowered resistance
 - e.g., wound infections, surgical infections, and urinary tract infections
Genus *Listeria*

- Wide distribution in nature - common in decaying matter
- *L. monocytogenes* pathogen of humans and animals
 - listeriosis - food-borne infection
 - especially dangerous to pregnant women, the fetus and infant, and compromised individuals (90% of cases)
 - 1600 cases/yr in US, 3rd leading cause of fatalities associated with food-borne illnesses
 - grows at refrigeration temperatures
 - associated with many foods that are not cooked, i.e. lunch meats, cheeses, sprouts, fruits
Order *Lactobacillales*

- Also called lactic acid bacteria (LAB)
- Morphologically diverse
 - nonsporing
 - usually nonmotile
- Ferment sugars for energy
 - lack cytochromes
 - fastidious
- Contains several important genera
Genus *Lactobacillus*

- Widely distributed in nature
 - on plant surfaces
 - in dairy products, meat, water, sewage, beer, fruits, and other materials
 - normal flora of mouth, intestinal tract, and vagina
 - usually not pathogenic
Importance of Lactobacilli

- Fermented products
 - vegetable products (sauerkraut, pickles, and silage)
 - beverages (beer, wine, juices, milk)
- Sour dough bread
- Swiss cheese and other hard cheeses, yogurt
- Sausages
- *L. acidophilus* – sold as probiotic agent
- Food spoilage – beer, wine, milk, meat
Importance of *Leuconostoc*

- Wine production
- Production of sauerkraut and pickles
- Production of buttermilk, butter, and cheese
- Synthesis of dextrans (*L. mesenteroides*)
- Involved in food spoilage
 - tolerate high sugar concentrations
 - grow in heavy syrup
Families *Streptococcaceae* and *Enterococcaceae*

- Chemoheterotrophic, mesophilic, nonsporing cocci, usually nonmotile
- Fermentative only
- Aerotolerant and anaerobic
- Groups
 - enterococci
 - lactococci
 - streptococci
Three Groups of Streptococci

• Pyogenic (pus producing) streptococci
 – e.g., S. pyogenes – streptococcal sore throat, acute glomerulonephritis, and rheumatic fever

• Oral streptococci
 – e.g., S. mutans – dental caries

• Other streptococci
 – e.g., S. pneumoniae – lobar pneumonia and otitis media
Streptococcal Diseases

• Caused by strep, group of Gram-positive bacteria
 – *Streptococcus pyogenes*
 • one of most important pathogens
 • group A β-hemolytic streptococci (GAS)
 – virulence factors
 • extracellular enzymes that break down host molecules
 • streptokinases – dissolve clots
 • streptolysin O and S – kill host leukocytes
 • capsules and M protein for attachment
Streptococcal Diseases

• *Streptococcus pyogenes*
 – widely distributed, some carriers
 – common infection “Strept throat”
 – transmission
 • respiratory droplets, direct or indirect contact

• Diagnosis
 – based on clinical and laboratory findings
 – rapid diagnostic tests available
Streptococcal Pharyngitis

- Common infection called strep throat
- Spread by droplets of saliva or nasal secretions
- Infection in throat (pharyngitis) or tonsils (tonsillitis)
- Signs and symptoms of disease not diagnostic because many viral infections have similar presentation
- Physical manifestations
 - redness, edema, exudate in 50% and lymph node enlargement in throat
Additional Streptococcal Diseases

• Contact superficial cutaneous diseases
 – include cellulitis, impetigo, and erysipelas

• Invasive diseases
 – may reach underlying muscle
Superficial Cutaneous

• Cellulitis
 – diffuse, spreading infection of subcutaneous tissue
 – redness and swelling

• Impetigo
 – also caused by *Staphylococcus aureus*
 – superficial cutaneous infection commonly seen in children
 – crusty lesions and vesicles surrounded by red border

• Erysipelas
 – acute infection of dermal layer of skin
 – red patches that may occur periodically at same site for years
Invasive Streptococcal Infections

• Caused by certain virulent strains of *S. pyogenes*

• Rapidly progressive
 – carry genes for exotoxins
 • superantigens (Select Agent)
 • tissue-destroying protease
Invasive infections

- Clinical manifestations
 - necrotizing fasciitis
 (“flesh eating”)
 - destruction of sheath covering skeletal muscle
 - myositis
 - inflammation and destruction of skeletal muscle and fat tissue
 - toxic shock-like syndrome (TSLS)
 - precipitous drop of blood pressure, failure of multiple organs, and high fever
Streptococcal Pneumonia

• Opportunistic pathogen
 – caused by one’s own normal microbiota
• Caused by *Streptococcus pneumoniae*
 – produces polysaccharide capsule and a toxin
 – rapidly multiplies in alveolar spaces
• Disease only occurs in individuals with predisposing condition
Poststreptococcal Diseases

- Glomerulonephritis (Bright’s disease) and rheumatic fever
- 1–4 weeks after an acute streptococcal infection
- Nonsupportive (nonpus-producing)
- Most serious problems associated with streptococcal infections in U.S.
Streptococcal Pneumonia

• Primary virulence factor
 – capsule of hyaluronic acid that is anti-phagocytic
 – allows rapid multiplication of bacteria in alveolar spaces

• Release of pneumolysin
 – destroys host cells
 – alveoli fill with blood cells and fluid
Streptococcal Pneumonia

• Diagnosis
 – chest X-ray, gram stain, culture, and tests for metabolic products

• Clinical manifestations
 – abrupt onset of chills, hard labored breathing, chest pain, and rust-colored sputum

• Treatment, prevention, and control
 – antibiotic therapy
 • resistant strains have appeared
 – immunization and treatment of infected persons
Streptococcal Diseases

• Other diseases are
 – sinusitis, conjunctivitis, otitis media
 – bacteremia, meningitis

• Treatment, prevention, and control
 – most treated by antibiotic therapy
 – Pneumovax capsular vaccine
Glomerulonephritis

• Inflammatory disease of renal glomeruli
 – a type III hypersensitivity

• Clinical manifestations
 – edema, fever, hypertension, and hematuria
 – may spontaneously heal or may become chronic

• Diagnosis
 – clinical history, physical findings, and confirmatory evidence of prior streptococcal infection

• Treatment, prevention, and control
 – antibiotic therapy (to kill residual bacteria), otherwise no specific therapy
Rheumatic Fever

• Autoimmune disease involving heart valves, joints, subcutaneous tissues, and central nervous system

• Clinical manifestations
 – vary widely, making diagnosis difficult

• Treatment, prevention, and control
 – therapy directed at decreasing inflammation and fever, and controlling cardiac failure
 – treatment with salicylates and corticosteroids
Genus *Streptococcus*

- Hemolysis patterns used in Lancefield grouping
 - alpha (α) – hemolysis
 - incomplete lysis of red blood cells
 - seen as greenish zone around colony on blood agar
 - beta (β) – hemolysis
 - complete lysis of red blood cells
 - seen as clear zone around colony on blood agar
Hemolysis on blood agar

Beta hemolytic (complete)

Alpha hemolytic (partial)

Gamma hemolytic (none)
Group B Streptococcal Disease

• Caused by Gram-positive *Streptococcus agalactiae* or Group B streptococcus (GBS)

• Common cause of neonatal and newborn diseases such as sepsis, meningitis, and pneumonia

• Transmitted directly from person-to-person with many people being transient carriers; vagina may be source for newborns
GBS

• Clinical manifestations
 – early onset disease
 • presents within first few hours after birth
 • may be severe meningitis or death
 – late onset disease - rare

• Diagnosis
 – Gram-positive, beta-hemolytic, streptococcal bacteria growth from cultures of otherwise sterile body fluids

• Treatment, prevention, and control
 – detect pregnant carriers
 – antibiotics
Important Enterococci and Lactococci

• *Enterococcus faecalis*
 – normal biotic in gastrointestinal tract
 – opportunistic pathogen (urinary tract infections and endocarditis)
 – Used as an indicator organism in natural waters, ocean, brackish water, frozen food

• *Lactococcus lactis* – production of buttermilk and cheese