41

Microbiology of Food
Microbial Growth and Food Spoilage

• Results from growth of microbes in food
 – alters food visibly and in other ways, rendering it unsuitable for consumption (this is not the same as foodborne pathogens)

• Involves predictable succession of microbes

• Different foods undergo different types of spoilage processes

• Toxins are sometimes produced

• Food spoilage bacteria are not specifically pathogenic bacteria
Microbial Growth and Food Spoilage

- Microbial growth is controlled by
 - intrinsic factors
 - factors related to the food itself
 - extrinsic factors
 - environment where food stored
Intrinsic Factors

- Food composition - carbohydrates
 - mold predominates
 - degrades food by hydrolysis
 - little odor
 - ergotism
 - hallucinogenic alkaloids released by *Claviceps purpurea*
 - may cause death

Table 41.1 Differences in Spoilage Processes in Relation to Food Characteristics

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Food Example</th>
<th>Chemical Reactions or Processes</th>
<th>Typical Products (and Effects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pectin</td>
<td>Fruits</td>
<td>Pectinolysis</td>
<td>Methanol, uronic acids (loss of fruit structure, soft rots)</td>
</tr>
<tr>
<td>Proteins</td>
<td>Meat</td>
<td>Proteolysis, deamination</td>
<td>Amino acids, peptides, amines, H₂S, ammonia, indole (bitterness, souring, bad odor, sliminess)</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>Starchy foods</td>
<td>Hydrolysis, fermentations</td>
<td>Organic acids, CO₂, mixed alcohols (souring, acidification)</td>
</tr>
<tr>
<td>Lipids</td>
<td>Butter</td>
<td>Hydrolysis, fatty acid degradation</td>
<td>Glycerol and mixed fatty acids (rancidity, bitterness)</td>
</tr>
</tbody>
</table>

1 Other reactions also occur during the spoilage of these substrates.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Intrinsic Factors

- Food composition – proteins or fats
 - bacterial growth predominates
- Putrefaction
 - proteolysis and anaerobic breakdown of proteins; foul smelling amine compounds
- Unpasteurized milk spoilage
 - acid production followed by putrification
- Butter
 - short-chained fatty acid production; rancid butter
Intrinsic Factors continued

• pH
 – impacts the make up of microbial community and therefore types of chemical reactions that occur when microbes grow in food
 – e.g., low pH favors yeast and mold

• Presence and availability of water
 – in general, lower water activity inhibits microbial growth
Intrinsic Factors continued

- Physical structure
 - grinding and mixing distribute microbes; increases the surface area and promotes microbial growth
 - outer skin of vegetables and fruits slows microbial growth
- Oxidation-reduction potential
 - higher is preferred by aerobes and fungi
 - altered by cooking
 - lower redox – more bacteria and anaerobes
Antimicrobial Substances

- Coumarins – fruits and vegetables
- Lysozyme – cow’s milk and eggs
- Aldehydic and phenolic compounds – herbs and spices such as rosemary, sage, cinnamon, mustard, basil
- Allicin – garlic
- Eugenol – cloves
- Polyphenols – green and black teas
Extrinsic Factors

• Temperature
 – lower temperatures slow microbial growth

• Relative humidity
 – higher levels promote microbial growth

• Atmosphere
 – oxygen promotes growth (high oxygen reduces growth in MAP)
 – modified atmosphere packaging (MAP)
 • use of shrink wrap and vacuum technologies to package food in controlled atmospheres (high CO2 frequently used and others)
Controlling Food Spoilage

Methods of preservation

- goal is to eliminate or reduce the populations of spoilage and disease causing microbes while maintaining food quality

• Filtration
 - Water, wine, beer, juices, soft drinks, and other liquids usually by filtration
 - May better preserve flavor and aroma

• Low Temperatures
 - Refrigeration at 5°C retards but does not stop microbial growth
 - microorganisms can still cause spoilage with extended storage
 - growth at temperatures below 10°C has been observed
 - fruit juice concentrates, ice cream, some fruits
Controlling Food Spoilage cont.

• High Temperatures
 – Food heated in special containers to 115°C for 25 to 100 minutes
 – Kills spoilage microbes, but not necessarily all microbes in food
 – Spoilage of canned foods - spoilage prior to canning, underprocessing, leakage of contaminated, water into cans during cooling process

• Pasteurization
 – Kills pathogens and substantially reduces number of spoilage organisms
 – Different pasteurization procedures heat for different lengths of time
 • shorter heating times result in improved flavor
 – Milk:
 • LTH (low temp holding/batch) 62.8 C for 30 mins
 • HTST (high temp short time) 72 C for 15 secs
 • UHT (ultra high temp) 138 C for 2 secs
Controlling Food Spoilage cont.

• Water Availability
 – Dehydration
 • e.g., lyophilization to produce freeze-dried foods is commonly used to eliminate bacterial growth
 • food preservation occurs as a result of free-water loss and an increase in solute concentration

• Radiation
 – Radappertization
 • use of ionizing radiation (gamma radiation) to extend shelf life or sterilize meat, seafoods, fruits, and vegetables
 • excellent penetrating power – food \textit{not} rendered radioactive
 • kills microbes in moist foods by producing peroxides from water
 – peroxides oxidize cellular constituents
Controlling Food Spoilage cont.

• Chemical Based Methods
 – GRAS
 • chemical agents “generally recognized as safe”
 • agents include organic acids, sulfite, ethylene oxide gas, ethyl formate
 • sodium nitrite – inhibits spore formation in meats, forms nitrosamines
 – pH of food impacts effectiveness of chemical preservative

• High Hydrostatic Pressure (HHP)
 – Applies pressures from 100-800 milliPascals (MPs) without significant changes in temperature
 • highly detrimental to cell membranes
 • effective at eliminating eukaryotic microbes
 • not as effective at elimination of Gram-positive microbes
 – No industry standards for HHP conditions (yet)
<table>
<thead>
<tr>
<th>Preservatives</th>
<th>Approximate Maximum Use</th>
<th>Organisms Affected</th>
<th>Foods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propionic acid/propionates</td>
<td>0.32%</td>
<td>Molds</td>
<td>Bread, cakes, some cheeses; inhibitor of ropy bread dough</td>
</tr>
<tr>
<td>Sorbic acid/sorbates</td>
<td>0.2%</td>
<td>Molds</td>
<td>Hard cheeses, figs, syrups, salad dressings, jellies, cakes</td>
</tr>
<tr>
<td>Benzoic acid/benzoates</td>
<td>0.1%</td>
<td>Yeasts and molds</td>
<td>Margarine, pickle relishes, apple cider, soft drinks, tomato ketchup, salad dressings</td>
</tr>
<tr>
<td>Parabens¹</td>
<td>0.1%</td>
<td>Yeasts and molds</td>
<td>Bakery products, soft drinks, pickles, salad dressings</td>
</tr>
<tr>
<td>SO₂/sulfites</td>
<td>200–300 ppm</td>
<td>Insects and microorganisms</td>
<td>Molasses, dried fruits, wine, lemon juice (not used in meats or other foods recognized as sources of thiamine)</td>
</tr>
<tr>
<td>Ethylene/propylene oxides</td>
<td>700 ppm</td>
<td>Yeasts, molds, vermin</td>
<td>Fumigant for spices, nuts</td>
</tr>
<tr>
<td>Sodium diacetate</td>
<td>0.32%</td>
<td>Molds</td>
<td>Bread</td>
</tr>
<tr>
<td>Dehydroacetic acid</td>
<td>65 ppm</td>
<td>Insects</td>
<td>Pesticide on strawberries, squash</td>
</tr>
<tr>
<td>Sodium nitrite</td>
<td>120 ppm</td>
<td>Clostridia</td>
<td>Cold cuts, hot dogs, sausages</td>
</tr>
<tr>
<td>Ethyl formate</td>
<td>15–200 ppm</td>
<td>Yeasts and molds</td>
<td>Dried fruits, nuts</td>
</tr>
</tbody>
</table>

¹ Methyl, propyl, and heptyl esters of p-hydroxybenzoic acid.
• Microbial product based inhibition
 – Bacteriocins
 • bactericidal proteins active against related species
 • some dissipate proton motive force of susceptible bacteria
 • some form pores in plasma membranes
 • some inhibit protein or RNA synthesis
 – e.g., nisin from *Lactococcus lactis*
 • used in low-acid foods to inactivate *Clostridium botulinum* during canning process
 – e.g., bacteriophages that kill *Listeria monocytogenes*
 • sprayed onto ready-to-eat meats prior to packaging
Controlling Food Spoilage cont.

• Packaging
 – Modified atmosphere packaging (MAP)
 • gases in stored food affect microbial growth
 • shrink wrap materials and vacuum technology control atmosphere
 – impermeable to gasses
 – high CO₂ content packaging can be used to prevent fungal growth
 – high O₂ content packaging produces superoxide radicals that inhibit microbial growth
Types of Food-Borne Disease

- About 48 million cases/yr in U.S.
 - approximately 128,000 hospitalizations
 - at least 3,000 deaths/yr in U.S.
 - only 14 million attributed to known pathogens

- Pathogens
 - Noroviruses, *Campylobacter jejuni*, *Salmonella* are major causes
 - *E. coli* and *Listeria* are also important pathogens
 - Other: *S. aureus*, *Clostridium perfringens*, *Bacillus cereus*, *Yersinia enterocolitica*, *Vibrio parahaemalyticus*, *Clostridium botulinum*, *Shigella*
Types of Food-Borne Disease

• Two primary types
 – food-borne infections
 – food intoxications

• Transmission
 – breakdown in hygiene
 – fecal-oral route key
 – fomites also important
 – mishandling
Food-Borne Infection

• Ingestion of pathogen, followed by:
 – growth
 – tissue invasion
 – and/or release of toxins (these toxins are not the same as an intoxication)

• Raw and undercooked foods
 – sprouts, raspberries, cantalope, spinach
 – meat, eggs and seafood
<table>
<thead>
<tr>
<th>Organism</th>
<th>Incubation Period (Hours)</th>
<th>Vomiting</th>
<th>Diarrhea</th>
<th>Fever</th>
<th>Food Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>1–8 (rarely, up to 18)</td>
<td>+++⁺¹</td>
<td>+</td>
<td>-²</td>
<td>Meats, dairy, and bakery products; sprouts, carrots, lettuce, parsley, and radishes</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>2–16</td>
<td>+++</td>
<td>++</td>
<td>-</td>
<td>Reheated fried rice, sprouts, cucumber</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>8–16</td>
<td>±³</td>
<td>+++</td>
<td>-</td>
<td>Rewarmed meat dishes</td>
</tr>
<tr>
<td>Clostridium botulinum</td>
<td>18–24</td>
<td>=</td>
<td>Rare</td>
<td>-</td>
<td>Canned goods contaminated during processing or packaging</td>
</tr>
<tr>
<td>Escherichia coli (enterohemorrhagic)</td>
<td>3–5 days</td>
<td>=</td>
<td>++</td>
<td>±</td>
<td>Undercooked ground beef, unpasteurized fruit juices and cider, and raw vegetables such as sprouts, lettuce, and celery</td>
</tr>
<tr>
<td>Escherichia coli (enterotoxigenic strain)</td>
<td>24–72</td>
<td>±</td>
<td>++</td>
<td>-</td>
<td>Contaminated drinking water; major cause of traveler’s diarrhea.</td>
</tr>
<tr>
<td>Vibrio parahaemolyticus</td>
<td>6–96</td>
<td>+</td>
<td>++</td>
<td>=</td>
<td>Shellfish, particularly clams and oysters</td>
</tr>
<tr>
<td>Vibrio cholerae</td>
<td>24–72</td>
<td>+</td>
<td>+++</td>
<td>-</td>
<td>Contaminated drinking water, as well as cabbage, coconut milk, and lettuce</td>
</tr>
<tr>
<td>Shigella spp.</td>
<td>24–72</td>
<td>=</td>
<td>++</td>
<td>+</td>
<td>Celery, melon, lettuce and other greens, parsley, sprouts</td>
</tr>
<tr>
<td>Salmonella spp. (gastroenteritis)</td>
<td>8–48</td>
<td>=</td>
<td>++</td>
<td>+</td>
<td>Many fruits and vegetables (including celery, green onions, lettuce and other greens, strawberries, tomatoes, melon), eggs and egg products, poultry</td>
</tr>
<tr>
<td>Salmonella enterica serovar Typhi (typhoid fever)</td>
<td>10–14 days</td>
<td>±</td>
<td>±</td>
<td>++</td>
<td>Usually spread from a healthy carrier to food via fecal-oral transmission.</td>
</tr>
<tr>
<td>Campylobacter jejuni</td>
<td>2–10 days</td>
<td>-</td>
<td>+++</td>
<td>++</td>
<td>Poultry, shellfish, green onions, lettuce, mushrooms, potatoes, peppers, spinach</td>
</tr>
<tr>
<td>Yersinia enterocolitica</td>
<td>4–7 days</td>
<td>=</td>
<td>++</td>
<td>+</td>
<td>Fecal-oral transmission from carrier to noncarrier</td>
</tr>
</tbody>
</table>

Adapted from Geo. F. Brooks, et al., Medical Microbiology. 21st ed. Copyright 1998 Appleton & Lange, Norwalk, CT. Reprinted by permission.

¹ + indicates condition is present, number of symbols indicates severity.
² − indicates condition is absent.
³ ± indicates condition sometimes occurs.
Food-Borne Intoxications

• Ingestion of toxins in foods in which microbes have grown

• Produce symptoms shortly after the food is consumed because growth of the disease-causing microorganism is not required

• Includes:
 – staphylococcal food poisoning
 – Botulism
 – *Clostridium perfringens* food poisoning
 – *Bacillus cereus* food poisoning
Other Food Disease

- Fungus-derived toxins
 - aflatoxins
 - carcinogens produced in fungus-infected grains and nut products
 - fumonisins
 - carcinogens produced in fungus-infected corn
- Algal toxins
 - contaminate fish and shellfish
Key U.S. Food Safety Legislation

• Driven in part by Upton Sinclair’s 1905 novel *The Jungle*, the Federal Meat Inspection Act was passed

• Other food safety legislation followed

<table>
<thead>
<tr>
<th>Year</th>
<th>Legislation Enacted</th>
<th>Provisions of Legislation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1906</td>
<td>Federal Meat Inspection Act</td>
<td>Mandates inspection of live animals, carcasses and processed products; improved sanitary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conditions for slaughter and processing</td>
</tr>
<tr>
<td>1957</td>
<td>Poultry Products Inspection Act</td>
<td>Mandates inspection of poultry products in major consuming areas, such as metropolitan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>localities</td>
</tr>
<tr>
<td>1946</td>
<td>Agricultural Marketing Act</td>
<td>Enables, but does not mandate, government inspection of fish, shellfish, and fishery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>products</td>
</tr>
<tr>
<td>1967–1968</td>
<td>Wholesome Meat and Wholesome Poultry Products</td>
<td>Extends the federal government’s authority regarding meat and poultry products in</td>
</tr>
<tr>
<td></td>
<td>Acts</td>
<td>intrastate commerce; requires poultry in interstate and foreign commerce to meet federal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inspection standards</td>
</tr>
<tr>
<td>1970</td>
<td>Egg Products Inspection Act</td>
<td>Provides for the mandatory continuous inspection of the processing of liquid, frozen, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dried egg products</td>
</tr>
<tr>
<td>1994</td>
<td>Testing for E. coli O157:H7</td>
<td>Requires testing raw ground beef for E. coli O157:H7</td>
</tr>
<tr>
<td>1995</td>
<td>Federal Food, Drug and Cosmetic Act</td>
<td>Mandates the federal inspection of all fish and fisheries products</td>
</tr>
<tr>
<td>1999</td>
<td>Testing for Listeria monocytogenes</td>
<td>Advises manufacturers of ready-to-eat meat and poultry products of the need to ensure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Listeria-free products. In 2002 federal testing began at plants that produced high- and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>medium-risk ready-to-eat products that did not take action to prevent Listeria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>contamination.</td>
</tr>
</tbody>
</table>
Food Safety Standards

Milk Testing:

• Phosphatase Test
 – Check for presence of phosphatase, enzyme is destroyed by heat and should not be present after pasteurization

• Aerobic Plate Counts

• Total Coliform Test
 – MPN directly into brilliant green lactose bile
 – Should be less than 10 coliforms/mL

• Cell counts
 – Limited number of WBCs and bacteria

• Antibiotic sensitivity
 – No allowable residual antibiotics
Microbiology of Fermented Foods

Chemical changes in food brought about microbial action

Major fermentations used are lactic, propionic, and alcoholic fermentations

- Majority of fermented milk products rely on lactic acid bacteria (LAB) in the genera *Lactobacillus*, *Lactococcus*, *Leuconostoc*, and *Streptococcus*
 - Mesophilic (app. 20-30° C): Buttermilk/sour cream
 - *Lactobacillus* spp. and *Lactococcus lactis*
 - Thermophilic (app. 45° C): Yogurt
 - *Lactobacillus* spp. and *Streptococcus thermophilus*
 - Yeast lactic: Kefir (ferm. milk with 2% ethanol)
 - yeasts, lactic acid bacteria, and acetic acid bacteria
 - Mold lactic: Viili (Finnish fermented milk)
 - filamentous fungi and lactic acid bacteria
Cheese Production

- Approximately 2,000 distinct varieties representing 20 general types
- Classified based on
 - texture, hardness (soft, semi-soft, hard, very hard)
- All from lactic acid fermentation
 - molds may further enhance flavor
<table>
<thead>
<tr>
<th>Cheese (Country of Origin)</th>
<th>Earlier Stages of Production</th>
<th>Later Stages of Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft, unripened Cottage</td>
<td>Lactococcus lactis</td>
<td>Leuconostoc cremoris</td>
</tr>
<tr>
<td>Cream</td>
<td>Lactococcus cremoris, L. diacetylactis, Streptococcus salivarius subspecies thermophilus, L. delbrueckii subspecies bulgaricus</td>
<td></td>
</tr>
<tr>
<td>Mozzarella (Italy)</td>
<td>S. thermophilus, L. bulgaricus</td>
<td></td>
</tr>
<tr>
<td>Soft, ripened Brie (France)</td>
<td>Lactococcus lactis, Lactococcus cremoris</td>
<td>Penicillium camemberti, P. candidum, Brevibacterium linens</td>
</tr>
<tr>
<td>Camembert (France)</td>
<td>L. lactis, Lactococcus cremoris</td>
<td>Penicillium camemberti, B. linens</td>
</tr>
<tr>
<td>Semisoft Blue, Roquefort (France)</td>
<td>L. lactis, Lactococcus cremoris</td>
<td>P. roqueforti</td>
</tr>
<tr>
<td>Brick, Muenster (United States)</td>
<td>L. lactis, Lactococcus cremoris</td>
<td>B. linens</td>
</tr>
<tr>
<td>Limburger (Belgium)</td>
<td>L. lactis, Lactococcus cremoris</td>
<td>B. linens</td>
</tr>
<tr>
<td>Hard, ripened Cheddar, Colby (Britain)</td>
<td>L. lactis, Lactococcus cremoris</td>
<td>Lactobacillus casei, L. plantarum</td>
</tr>
<tr>
<td>Swiss (Switzerland)</td>
<td>L. lactis, L. helveticus, S. salivarius subspecies thermophilus</td>
<td>Propionibacterium shermanii, P. freudenreichii</td>
</tr>
<tr>
<td>Very hard, ripened Parmesan (Italy)</td>
<td>L. lactis, Lactococcus cremoris, S. salivarius subspecies thermophilus</td>
<td>L. delbrueckii subspecies bulgaricus</td>
</tr>
</tbody>
</table>

1 *Lactococcus lactis* stands for *L. lactis* subspecies *lactis*. *Lactococcus cremoris* is *L. lactis* subspecies *cremoris*, and *Lactococcus diacetylactis* is *L. lactis* subspecies *diacetylactis*.
Microbiology of Fermented Foods

• Breads
 – Involves growth of *Saccharomyces cerevisiae* (baker’s yeast) under aerobic conditions
 • maximizes CO₂ production, which leavens bread
 – Other microbes used to make special breads (e.g., sourdough bread)
 – Can be spoiled by *Bacillus* species that produce ropiness

• Other Fermented Foods
 – Sufu – from fermentation of tofu
 – Sauerkraut (sour cabbage) – from wilted, shredded cabbage
 – Pickles – from cucumbers
 – Silage – from grass, chopped corn, and other fresh animal feeds
<table>
<thead>
<tr>
<th>Foods</th>
<th>Raw Ingredients</th>
<th>Fermenting Microorganisms</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffee</td>
<td>Coffee beans</td>
<td>Erwinia dissolvens, Saccharomyces spp.</td>
<td>Brazil, Congo, Hawaii, India</td>
</tr>
<tr>
<td>Gari</td>
<td>Cassava</td>
<td>Corynebacterium manihot, Geotrichum spp.</td>
<td>West Africa</td>
</tr>
<tr>
<td>Kenkey</td>
<td>Corn</td>
<td>Aspergillus spp., Penicillium spp., lactobacilli, yeasts</td>
<td>Ghana, Nigeria</td>
</tr>
<tr>
<td>Kimchi</td>
<td>Cabbage and other vegetables</td>
<td>Lactic acid bacteria</td>
<td>Korea</td>
</tr>
<tr>
<td>Miso</td>
<td>Soybeans</td>
<td>Aspergillus oryzae, Zygosaccharomyces rouxii</td>
<td>Japan</td>
</tr>
<tr>
<td>Ogi</td>
<td>Corn</td>
<td>Lactobacillus plantarum, Lactococcus lactis, Z. rouxii</td>
<td>Nigeria</td>
</tr>
<tr>
<td>Olives</td>
<td>Green olives</td>
<td>Leuconostoc mesenteroides, Lactobacillus plantarum</td>
<td>Worldwide</td>
</tr>
<tr>
<td>Ontjom</td>
<td>Peanut presscake</td>
<td>Neurospora sitophila</td>
<td>Indonesia</td>
</tr>
<tr>
<td>Peujeum</td>
<td>Cassava</td>
<td>Molds</td>
<td>Indonesia</td>
</tr>
<tr>
<td>Pickles</td>
<td>Cucumbers</td>
<td>Pediococcus cerevisiae, L. plantarum, L. brevis</td>
<td>Worldwide</td>
</tr>
<tr>
<td>Poi</td>
<td>Taro roots</td>
<td>Lactic acid bacteria</td>
<td>Hawaii</td>
</tr>
<tr>
<td>Sauerkraut</td>
<td>Cabbage</td>
<td>L. mesenteroides, L. plantarum, L. brevis</td>
<td>Worldwide</td>
</tr>
<tr>
<td>Soy sauce</td>
<td>Soybeans</td>
<td>A. oryzae or A. soyaе, Z. rouxii, Lactobacillus delbrueckii</td>
<td>Japan</td>
</tr>
<tr>
<td>Sufu</td>
<td>Soybeans</td>
<td>Actinimucor elegans, Mucor spp.</td>
<td>China</td>
</tr>
<tr>
<td>Tao-si</td>
<td>Soybeans</td>
<td>A. oryzae</td>
<td>Philippines</td>
</tr>
<tr>
<td>Tempeh</td>
<td>Soybeans</td>
<td>Rhizopus oligosporus, R. oryzae</td>
<td>Indonesia, New Guinea, Surinam</td>
</tr>
</tbody>
</table>

Wines and Champagnes

- **Enology (wine production)**
 - crushed grapes
 - separation and storage of liquid (must) before fermentation
 - fresh must
 - treated with sulfur dioxide fumigant
 - *Saccharomyces cerevisiae* or *S. liposideus* added for consistent results
 - fermented for 3–5 days at 20–28°C

Distilled Spirits

- Similar to beer-making process
 - begins with sour mash
 - mash inoculated with homolactic bacterium
 - following fermentation, is distilled to concentrate alcohol
Beers and Ales

• Cereal grains used for fermentation
 – malt
 • germinated barley grains having activated enzymes
 – mash
 • the malt after being mixed with water in order to hydrolyze starch to usable carbohydrates
 – mash heated with hops
 • hops provide flavor and assist in clarification of wort
 • heating inactivates hydrolytic enzymes

• Similar to beer-making process
 – begins with sour mash
 • mash inoculated with homolactic bacterium
 – following fermentation, is distilled to concentrate alcohol
Probiotics and Standardization

• Probiotics
 – live microorganisms, which when administered in adequate amounts, confer a health benefit to the host
 – specific requirements should be met

• Microorganisms
 – *Lactobacillus*, *Bifidobacterium*
Possible Benefits of Probiotics

• Immunomodulation
• Control of diarrhea
• Possible modulation of Crohn’s Disease
• *Lactobacillus acidophilus* and *Bifidobacterium*
 – help minimize lactose intolerance
 – improve general intestinal health and balance
 – produce bacteriocins that are destructive to pathogens
 – may lower serum cholesterol
 – may have anti-tumor activity
Probiotic Microbes in Farm Animals

• Probiotics
 – *Lactobacillus acidophilus* in beef cattle
 • decrease *E. coli* O157:H7
 – *Bacillus* strain in poultry
 • limit colonization of gut by the process of competitive exclusion
 • reduces *Salmonella* and *Campylobacter*